What’s The Difference Between VR, AR and MR
What’s The Main Difference Between VR, AR and MR

Extended reality is rapidly developing technology, and today more and more different enterprises apply XR solutions to increase their efficiency. According to P&S Intelligence, in 2021 the XR market was estimated at 28 USD billions,  and by 2030 it will be estimated at 1000 USD billions.

Efficient application of new technologies requires a clear understanding of their possibilities, functions, and limitations. With no understanding, companies might face  some difficulties. Like, for example, excessive or insufficient functionality, unjustified expectations, and incorrect tasks for XR solutions. 

That’s why we decided to discuss  the meaning of virtual, augmented, and mixed realities in details and what’s the difference between them.

A Brief Issue Review

If virtual reality completely immerses a VR headset user in digital world, augmented reality superimposes virtual elements into physical world. 

Mixed reality has similar traits, that’s why MR is often combined with AR in one category,  and you can see it in our website. And sometimes, due to the similarities of two technologies, some people can’t see the difference between augmented and mixed reality, and don’t completely realize how these two technologies work. 

Extended Reality As An Umbrella Term

At first, let’s figure out the concept of extended reality. Extended reality is an umbrella term, which unites virtual, augmented, and mixed realities, as well as other technologies, which can be created in the future. The key common feature of technologies mentioned above is an immersion effect they create for a user and the changes in the perception of reality with digital solutions.

Brief Information About Virtual Reality

So, let’s begin with VR. Virtual reality is a digital space, in which a person immerses themselves, using VR goggles, and interacts with digital objects with hands, controllers, or sight. Some smartphones also provide a possibility to use virtual reality. Moreover, some models come complete with special equipment, that allows consumer use as a real VR headset. Also, in virtual reality, a user is able to communicate with other people using avatars. 

Your perception of the world can be warped,” said Phia, virtual host of YouTube channel The Virtual Reality Show, “as you realize your body responds to what it perceives as real, not necessarily what is. There’s a great video that demonstrates people using VR for the first time, where they walk a plank for atop a skyscraper. Their brains respond to the experience, thinking that it’s real, making them hesitant to walk out of the plank, despite it being an illusion.” 

In business, VR is used for remote work or training, where workers learn how to handle equipment properly and communicate with customers and business partners.

How Augmented Reality Works

With augmented reality, digital elements are overlaid in a physical environment. This process is carried out with the help of a smartphone, tablet screen, or smart glasses. One of the very first and most popular examples of using AR is the mobile game Pokemon Go, where a player looks for digital creatures, hidden in the real world. 

A smartphone shares its location and can place a model and fix it in a space. And you can walk around this object, look from different sides. But, in fact, how does it happen? When you move to the right with the smartphone in your hands, a device changes its location with you. It can calculate its own position in relation to the digital model. So, we have an impression, that the model stays on its place, and the phone moves around it,” said Oleksii Volkov, the XR department head of our company. 

Augmented reality nowadays is widely used for training, exhibitions, and marketing. Also, AR is applied for designing navigation, equipment assembly, and operating instructions. 

In general, there are four types of augmented reality:

  • AR with markers. Images and items are used as markers to activate AR on a device. The AR Watches Mobile app allows trying on NFT models of watches with bracelet marker, that can be printed and be worn on a wrist.

  • Markerless AR. This type of the technology uses navigation, that allows AR apps to  orientate in space and place virtual objects on a location. These AR apps can use GPS, digital compass, etc. Samsung WebAR is the one of examples of markerless AR apps.

  • AR projections. Here virtual objects are superimposed on real items, using projections. Lightform developed AR projections where houses are used as background  for showing 3D illusions, like in this video, for example.

  • AR, that enables real object recognition algorithms. It augments or completely replaces the real object with digital data. These AR apps can also be used in healthcare, where AR projections of internal organs are superimposed on a patient’s body. Sync AR by SNAP (Surgical Navigation Advanced Platform) is a device that places digital versions of internal structures on a human body during surgery.

The Way Mixed Reality Extends Real World

Mixed reality, in its turn, combines physical and virtual worlds, places digital objects in reality, and allows users to interact with them. For mixed reality, you can use the same MR headsets you usually use for AR and some VR headsets, like Meta Quest Pro.

According to the article on the website of Microsoft, the company which released Hololens for the first time in 2018, mixed reality is created according to such principles:

  • Real space maps and markers, that allow to place a virtual object;
  • A possibility to track an MR headset user’s sight, hands movement, and speech;
  • Recreation of virtual space sounds, just like in VR;
  • A possibility to place objects both in virtual and real spaces;
  • A collaboration of MR headset users on the same 3D objects.

Mixed reality is often used in architecture, engineering and construction, design, healthcare, and many other fields. 

We can highlight two types of mixed reality:

  • Adding virtual objects into physical world. In this case, MR really resembles AR. But in mixed reality, there are more possibilities to interact with virtual object. During TED-Talk in Amsterdam, Beerend Hierk, explained how MR works, using mixed reality app for medical students as an example.

Our application allows me to see a holographic three-dimensional model of the leg and the foot right here, in front of me. I can walk around and explore it in all its dimensions. I can select, but also hide structures, like bones and muscles. And if you would wear a Hololens too, you would be able to see the same model, as me. And we would be able to study the ankle together. What’s really cool is that if you move your ankle, the holographic ankle moves with you”.

  • Adding real objects into virtual world. Usually, this type of mixed reality is applied in games, remote work, and other fields. For example, Immersed, a VR-office, allows a headset user to create additional digital screens for a physical laptop and transfer a real keyboard into virtual conference. In this video, you can see how this program works with the newest headset, Meta Quest Pro.

Augmented Reality vs Mixed Reality

Having understood the definitions of the three types of immersive technologies, let’s try to find out what are the actual main common and distinctive features of AR and MR. 

At first glance, these technologies are almost identical. Even Wikipedia provides one of the definitions of mixed reality as synonymous of AR. Yes, both technologies give possibility to place a virtual object into real environment and observe it from different angles, and also allow a user to receive additional inforrmation about it.

But, on the other hand, differences between AR and MR are evident. In his short video, famous influencer and entrepreneur Bernard Marr said, that in AR you can emphasize certain physical object and provide it with additional information with digital object. 

So, that’s augmented reality,”said Marr, “where these digital images stay pretty much in place, and you can’t change them. You just point at a building, and these images pop up”.

Meanwhile, in MR you can place digital objects into real world as well, but there’s a possibility for different manipulation: increasing the size, changing the shape and design, augmenting them with additional details, etc. 

So, just imagine placing a digital drumkit into your room,” explained Marr.  “And then, you have digital sticks that you project into your hands, and you can now play the drums and hear the music. This is possible with mixed reality”.

Moreover, mixed reality gives a user much more than playing virtual musical instrument or creating digital document in MR headset. Mixed reality provides a possibility to work on 3D objects both in real and virtual environment. With MR, a user can digitalize and transfer not just real room details, but a whole real room into a virtual space. You can see how it works in this video by Microsoft. 

So, we finally found out the main difference between VR, AR, and MR. If virtual reality immerses a headset user into a digital world, AR and MR allow them to place 3D objects into real space. But, at the same time, mixed reality gives more expanded possibilities to interact with digital objects and the digital world. 

Latest Articles

October 4, 2024
Meta Connect 2024: Major Innovations in AR, VR, and AI

Meta Connect 2024 explored new horizons in the domains of augmented reality, virtual reality, and artificial intelligence. From affordable mixed reality headsets to next-generation AI-integrated devices, let’s take a look at the salient features of the event and what they entail for the future of immersive technologies. Meta CEO Mark Zuckerberg speaks at Meta Connect, Meta’s annual event on its latest software and hardware, in Menlo Park, California, on Sept. 25, 2024. David Paul Morris / Bloomberg / Contributor / Getty Images Orion AR Glasses At the metaverse where people and objects interact, Meta showcased a concept of Orion AR Glasses that allows users to view holographic video content. The focus was on hand-gesture control, offering a seamless, hands-free experience for interacting with digital content. The wearable augmented reality market estimates looked like a massive increase in sales and the buyouts of the market as analysts believed are rear-to-market figures standing at 114.5 billion US dollars in the year 2030. The Orion glasses are Meta’s courageous and aggressive tilt towards this booming market segment. Applications can extend to hands-free navigation, virtual conferences, gaming, training sessions, and more. Quest 3S Headset Meta’s Quest 3S is priced affordably at $299 for the 128 GB model, making it one of the most accessible mixed reality headsets available. This particular headset offers the possibility of both virtual immersion (via VR headsets) and active augmented interaction (via AR headsets). Meta hopes to incorporate a variety of other applications in the Quest 3S to enhance the overall experience. Display: It employs the most modern and advanced pancake lenses which deliver sharper pictures and vibrant colors and virtually eliminate the ‘screen-door effect’ witnessed in previous VR devices. Processor: Qualcomm’s Snapdragon XR2 Gen 2 chip cuts short the loading time, thus incorporating smoother graphics and better performance. Resolution: Improvement of more than 50 pixels is observed in most of the devices compared to older iterations on the market, making them better cater to the customers’ needs Hand-Tracking: Eliminating the need for software, such as controllers mandatory for interaction with the virtual world, with the advanced hand-tracking mechanisms being introduced. Mixed Reality: A smooth transition between AR and VR fluidly makes them applicable in diverse fields like training and education, health issues, games, and many others. With a projected $13 billion global market for AR/VR devices by 2025, Meta is positioning the Quest 3S as a leader in accessible mixed reality. Meta AI Updates Meta Incorporated released new AI-assisted features, such as the ability to talk to John Cena through a celebrity avatar. These avatars provide a great degree of individuality and entertainment in the digital environment. Furthermore, one can benefit from live translation functions that help enhance multilingual art communication and promote cultural and social interaction. The introduction of AI-powered avatars and the use of AI tools for translation promotes the more engaging experiences with great application potential for international business communication, social networks, and games. Approximately, 85% of customer sales interactions will be run through AI and its related technologies. By 2030, these tools may have become one of the main forms of digital communication. AI Image Generation for Facebook and Instagram Meta has also revealed new capabilities of its AI tools, which allow users to create and post images right in Facebook and Instagram. The feature helps followers or users in this case to create simple tailored images quickly and therefore contributes to the users’ social media marketing. These AI widgets align with Meta’s plans to increase user interaction on the company’s platforms. Social media engagement holds 65% of the market of visual content marketers, stating that visual content increases engagement. These tools enable the audience to easily generate high-quality sharable visual images without any design background. AI for Instagram Reels: Auto-Dubbing and Lip-Syncing Advancing Meta’s well-known Artificial Intelligence capabilities, Instagram Reels will, in the near future, come equipped with automatic dubbing and lip-syncing features powered by the artificial intelligence. This new feature is likely to ease the work of content creators, especially those looking to elevate their video storytelling with less time dedicated to editing. The feature is not limited to countries with populations of over two billion Instagram users. Instead, this refers to Instagram’s own large user base, which exceeds two billion monthly active users globally. This AI-powered feature will streamline content creation and boost the volume and quality of user-generated content. Ray-Ban Smart Glasses The company also shared the news about the extensions of the undoubted and brightest technology of the — its Ray-Ban Smart Glasses which will become commercially available in late 2024. Enhanced artificial intelligence capabilities will include the glasses with hands-free audio and the ability to provide real-time translation. The company’s vision was making Ray-Ban spectacles more user friendly to help those who wear them with complicated tasks, such as language translation, through the use of artificial intelligence. At Meta Connect 2024, again, the company declared their aim to bring immersive technology to the masses by offering low-priced equipment and advanced AI capabilities. Meta is confident to lead the new era of AR, VR, and AI innovations in products such as the Quest 3S, AI-enhanced Instagram features, and improved Ray-Ban smart glasses. With these processes integrated into our digital lives, users will discover new ways to interact, create, and communicate within virtual worlds.

September 5, 2024
Gamescom 2024: The Future of Gaming is Here, and It’s Bigger Than Ever

This year’s Gamescom 2024 in Cologne, Germany, provided proof of the gaming industry’s astounding growth. Our team was thrilled to have a chance to attend this event, which showcased the latest in gaming and gave us a glimpse into the future of the industry. Gamescom 2024 was a record-breaking conference, with over 335,000 guests from about 120 nations, making it one of the world’s largest and most international gaming gatherings. This year’s showcase had a considerable rise in attendance — nearly 15,000 people over the previous year. Gamescom 2024 introduced new hardware advances used for the next generation of video games. Improvements in CPUs and video cards, particularly from big companies in the industry like AMD and NVIDIA, are pushing the boundaries of what is feasible for games in terms of performance and graphics. For example, NVIDIA introduced the forthcoming GeForce RTX series, which promises unprecedented levels of immersion and realism. Not to be outdone, AMD has introduced a new series of Ryzen processors designed to survive the most extreme gaming settings. These technological advancements are critical as they allow video game developers to create more complex and visually stunning games, particularly for virtual reality. As processing power increases, virtual reality is reaching new heights. We saw numerous VR-capable games at Gamescom that offer players an unparalleled level of immersion. Being a VR/AR development company, we were excited to watch how technology was evolving and what new possibilities it was bringing up. The video game called “Half-Life: Alyx” has set a new standard, and it’s clear that VR is no longer a niche but a growing segment of the gaming market. Gamescom’s format proved its strength, as indicated by the fact that its two days were run in two formats. Gamescom stands out from other games exhibitions or conventions by being both a business and consumer show. This dual format enables the developers to collect feedback on their products immediately. This is especially so when meeting prospective clients during a presentation or when giving a demonstration to gamers, the response elicited is very helpful. Rarely does anyone get a chance to witness the actual implementation and real-world effect of what they have done.

September 2, 2024
How to Use Artificial Intelligence in Creating Content for RPG Games

Introduction The World of Artificial Intelligence (AI) and Its Application in Content Creation for RPG Games Recently, the world of IT technology has been actively filled with various iterations of artificial intelligence. From advanced chatbots that provide technical support to complex algorithms aiding doctors in disease diagnosis, AI’s presence is increasingly felt. In a few years, it might be hard to imagine our daily activities without artificial intelligence, especially in the IT sector. Let’s focus on generative artificial intelligence, such as TensorFlow, PyTorch, and others, which have long held an important place in software development. However, special attention should be given to the application of AI in the video game industry. We see AI being used from voice generation to real-time responses. Admittedly, this area is not yet so developed as to be widely implemented in commercially available games. But the main emphasis I want to make is on the creation and enhancement of game content using AI. In my opinion, this is the most promising and useful direction for game developers. The Lack of Resources in Creating Large and Ambitious RPG Games and How AI Can Be a Solution In the world of indie game development, a field with which I am closely familiar, the scarcity of resources, especially time and money, is always a foremost challenge. While artificial intelligence (AI) cannot yet generate money or add extra hours to the day (heh-heh), it can be the key to effectively addressing some of these issues. Realism here is crucial. We understand that AI cannot write an engaging story or develop unique gameplay mechanics – these aspects remain the domain of humans (yes, game designers and other creators can breathe easy for now). However, where AI can truly excel is in generating various items, enhancing ideas, writing coherent texts, correcting errors, and similar tasks. With such capabilities, AI can significantly boost the productivity of each member of an indie team, freeing up time for more creative and unique tasks, from content generation to quest structuring. What is Artificial Intelligence and How Can it be Used in Game Development For effective use of AI in game development, a deep understanding of its working principles is essential. Artificial intelligence is primarily based on complex mathematical models and algorithms that enable machines to learn, analyze data, and make decisions based on this data. This could be machine learning, where algorithms learn from data over time becoming more accurate and efficient, or deep learning, which uses neural networks to mimic the human brain. Let’s examine the main types of AI Narrative AI (OpenAI ChatGPT, Google BERT): Capable of generating stories, dialogues, and scripts. Suitable for creating the foundations of the game world and dialogues. Analytical AI (IBM Watson, Palantir Technologies): Focuses on data collection and analysis. Used for optimizing game processes and balance. Creative AI (Adobe Photoshop’s Neural Filters, Runway ML): Able to create visual content such as textures, character models, and environments. Generative AI (OpenAI DALL-E, GPT-3 and GPT-4 from OpenAI): Ideal for generating unique names, item descriptions, quest variability, and other content. By understanding the strengths and weaknesses of each type of AI, developers can use them more effectively in their work. For example, using AI to generate original stories or quests can be challenging, but using it for correcting grammatical errors or generating unique names and item descriptions is more realistic and beneficial. This allows content creators to focus on more creative aspects of development, optimizing their time and resources. An Overview of the Characteristics of Large Fantasy RPG Games and Their Content Requirements In large fantasy RPG games, not only gameplay and concept play a pivotal role, but also the richness and variability of content – spells, quests, items, etc. This diversity encourages players to immerse themselves in the game world, sometimes spending hundreds of hours exploring every nook and cranny. The quantity of this content is important, but so is its quality. Imagine, we offer the player a relic named “Great Heart” with over 100 attribute variations – that’s one approach. But if we offer 100 different relics, each with a unique name and 3-4 variations in description, the player’s experience is significantly different. In AAA projects, the quality of content is usually high, with hundreds of thousands of hours invested in creating items, stories, and worlds. However, in the indie sector, the situation is different: there’s a limited number of items, less variability – unless we talk about roguelikes, where world and item generation are used. A typical feature of roguelikes is the randomization of item attributes. However, they rarely offer unique generation of names or descriptions; if they do, it’s more about applying formulas and substitution rules, rather than AI. This opens new possibilities for the use of artificial intelligence – not just as a means of generating random attributes, but also in creating deep, unique stories, characters, and worlds, adding a new dimension to games. Integrating AI for Item Generation: How AI Can Assist in Creating Unique Items (Clothing, Weapons, Consumables). One of the practical examples of using AI is creating variations based on existing criteria. Why do I consider this the best way to utilize AI? Firstly, having written the story of your game world, we can set limits for the AI, providing clear input and output data. This ensures a 100% predictable outcome from AI. Let’s examine this more closely. When talking about the world’s story, I mean a few pages that describe the world, its nature, and rules. It could be fantasy, sci-fi, with examples of names, unique terminology, or characteristic features that help AI understand the mood and specifics of the world. Here is an excerpt from the text I wrote for my game world. The Kingdom of Arteria is an ancient and mysterious realm, shrouded in secrets and imbued with a powerful form of dark magic. For centuries, it has been ruled by Arteon the First, a wise and just monarch whose benevolence has brought peace and prosperity to his…



Let's discuss your ideas

Contact us