Most Interesting FinTech Startups in 2018
Most Interesting Fintech Startups in 2018

One thing that people like despite coming from different backgrounds is money. However, these days what is popular is technology that can handle money. The rise of Fintech financial technologies has enabled people to pay for goods, acquire loans and manage their retirement benefits. Fintech is an industry that has raised over $18 billion since 2015 and has up to 1,400 venture capitalist-backed deals. The industry has grown since its inception, and various Fintech startups are valued more than $1 billion. However, the industry has had its shortcomings over the years. Some companies have had layoffs and experienced massive losses over the years. Other companies have dealt with scandals that have affected their brand image. To get an insight into why Fintech is very popular right now, here are some of the most exciting Fintech startups in 2018.

Stripe

Stripe is a payments processing startup that allows any business to accept credit cards, apple pay when making payments. The company also offers other services like fraud prevention and banking infrastructure that is used to operate online payment systems. The company makes a profit of $440 million since it was founded in 2011. The company is currently valued at $9.2 billion, which shows how far the company has grown since its inception. The startup is found in San Francisco, California, which is its headquarters. Stripe’s biggest customers are Lyft, Salesforce, and Amazon. However, despite how big the company is, it is receiving competition from other companies like Braintree and PayPal.

SoFi

SoFi is an online finance company that offers student loan refinancing and gives out mortgages and personal loans. The main reason why the startup has grown over the years is that it is an outside lender, which does not follow the many rules imposed by the bank when borrowing money. The company has come up with an alumni-funded lending model, which connects other students and graduates with institutional investors via the schools. The primary purpose of the company is to focus on low-risk students and other graduates. The company was founded in 2011 and is currently valued at $4.4 billion, with a revenue of $547 million. The company is based in San Francisco, which is its headquarters. However, the company hasn’t had its challenges over the years. The most recent scandal was when its CEO Mike Cagney stepped down due to claims of sexual harassment from the employees.

Clover

Clover is an Australian investment application. The primary objective of the company is to ensure that various investments are transparent and accessible to all Australians. The main reason why the company was launched was to help Australians who do not get the right financial advice. The company was targeting young Australians. The company has focused on convincing young Australians to start a saving culture, to grow their wealth in the future. The company also focuses on people with Medicare Advantage. Many customers see it as an insurance company. The company was founded in 2013, and it has raised over $425 million since its inception. The startup is currently valued at 1.2 billion.

Robinhood

Robinhood is a zero-commission, US-focused stock brokerage, which is valued at $1.3 billion. The startup was established in 2012, and it is very popular with the millennials who like the $0 commission fee on its trades. The company makes money through the interests from dollars and cents that is usually left in the customer’s accounts, and it has a premium product called Robinhood gold. The premium product has various benefits like extended trading hours, which in exchange you pay a $6 monthly subscription fee. Nevertheless, the company faces stiff competition from competitors like Charles Schwab and E*Trade.

Coinbase

Initially launched in 2012, the company has grown to become one of the most popular cryptocurrency exchange, which has enabled the users to buy and sell various digital currencies like bitcoin. The startup will improve in future due to the increased demand for cryptocurrencies. Bitcoin has become very popular, but most people are still frightened by the cryptocurrencies and the blockchain network. This is the main reason why people depend on coinbase to validate their investment. The company has an estimated value of $1.6 billion.

Oscar

The primary function of the company is to sell health insurance plans to another user-friendly digital interface with various lifestyle brands. The company does not associate itself with a safety-net vibe from other brick and mortar insurance vets. Oscar was initially launched in 2013, and it became popular during the Obamacare regime. The economy led to many people needing to start convenient healthcare plans. The company has an estimated value of $2.7 billion.

Credit Karma

Credit Karma is a finance company that specializes in giving out free credit scores and reports. The startup was launched in 2007, and it has grown over the years taking over the digital credit monitoring space. This is due to various data breaches like Equifax, which has made many customers be concerned about the fraudulent credit activity. The company is valued at $3.5 billion. All the services offered by the company are free to their customers. The revenue that they collect from targeted advertisements for the financial products covers the costs of providing free services to its customers. The company earns money from various lenders who pay the company when the company recommends multiple customers to the lenders. The startup is found in San Francisco, California, which is its main headquarters.

Latest Articles

September 10, 2025
Immersive Technology & AI for Surgical Intelligence – Going Beyond Visualization

Immersive XR Tech and Artificial Intelligence are advancing MedTech beyond cautious incremental change to an era where data-driven intelligence transforms healthcare. This is especially relevant in the operating room — the most complex and high-stakes environment, where precision, advanced skills, and accurate, real-time data are essential. Incremental Change in Healthcare is No Longer an Option Even in a reality transformed by digital medicine, many operating rooms still feel stuck in an analog past, and while everything outside the OR has moved ahead, transformation has been slow and piecemeal inside it. This lag is more pronounced in complex, demanding surgeries, but immersive technologies convert flat, two-dimensional MRI and CT scans into interactive 3D visualizations. Surgeons now have clearer spatial insight as they work, which reduces the risk of unexpected complications and supports better overall results. Yet, healthcare overall has changed only gradually, although progress has been made over the course of decades. Measures such as reducing fraud, rolling out EMR, and updating clinical guidelines have had limited success in controlling costs and closing quality gaps. For example, the U.S. continues to spend more than other similarly developed countries. Everything calls for a fundamental rethinking of how healthcare is structured and delivered. Can our healthcare systems handle 313M+ surgeries a year? Over 313 million surgeries will likely be performed every year by 2030, putting significant pressure on healthcare systems. Longer waiting times, higher rates of complications, and operating rooms stretched to capacity are all on the rise as a result. Against this backdrop, immersive XR and artificial intelligence are rapidly becoming vital partners in the OR. They turn instinct-driven judgement into visual data-informed planning, reducing uncertainty and supporting confident decision-making. The immediate advantages are clear enough: shorter time spent in the operating room include reduced operating-room time and lower radiation exposure for patients, surgeons, and OR staff. Just as critical, though less visible, are the long-term outcomes. Decreased complication rates and a lower likelihood of revision surgeries are likely to have an even greater impact on the future of the field. These issues have catalyzed the rise of startups in surgical intelligence, whose platforms automate parts of the planning process, support documentation, and employ synthetic imaging to reduce time spent in imaging suites. Synthetic imaging, for clarity, refers to digitally generated images, often created from existing medical scans, that enrich diagnostic and interpretive insights. The latest breakthroughs in XR and AI Processing volumetric data with multimodal generative AI, which divides volumes into sequences of patches or slices, now enables real-time interpretation and assistance directly within VR environments. Similarly, VR-augmented differentiable simulations are proving effective for team-based surgical planning, especially for complex cardiac and neurosurgical cases. They integrate optimized trajectory planners with segmented anatomy and immersive navigation interfaces. Organ and whole-body segmentation, now automated and fast, enables multidisciplinary teams to review patient cases together in XR, using familiar platforms such as 3D Slicer. Meanwhile, DICOM-to-XR visualization workflows built on surgical training platforms like Unity and UE5 have become core building blocks to a wave of MedTech startups that proliferated in 2023–2024, with further integrations across the industry. The future of surgery is here The integration of volumetric rendering and AI-enhanced imaging has equipped surgeons with enhanced visualization, helping them navigate the intersection of surgery and human anatomy in 2023. Such progress led to a marked shift in surgical navigation and planning, becoming vital for meeting the pressing demands currently facing healthcare systems. 1) Surgical VR: Volumetric Digital Twins Recent clinical applications of VR platforms convert MRI/CT DICOM stacks into interactive 3D reconstructions of the patient’s body. Surgeons can explore these models in detail, navigate them as if inside the anatomy itself, and then project them as AR overlays into the operative field to preserve spatial context during incision. Volumetric digital twins function as dynamic, clinically vetted, and true-to-size models, unlike static images. They guide trajectory planning, map procedural risks, and enable remote team rehearsals. According to institutions using these tools, the results include clearer surgical approaches, reduced uncertainty around critical vasculature, and greater confidence among both surgeons and patients. These tools serve multidisciplinary physician teams, not only individual users. Everyone involved can review the same digital twin before and during surgery, working in tight synchronization without the risk of mistakes, especially in complex surgeries such as spinal, cranial, or cardiovascular cases. These pipelines also generate high-fidelity, standardized datasets that support subsequent AI integration, as they mature. Automated segmentation, predictive risk scoring, and differentiable trajectory optimizers can now be layered on top, transforming visual intuition into quantifiable guidance and enabling teams to leave less to chance, delivering safer and less invasive care. The VR platform we built for Vizitech USA serves as a strong example within the parallel and broader domain of healthcare education. VMed-Pro is a virtual-reality training platform built to the standards of the National Registry of Emergency Medical Technicians; the scenarios mirror real-world protocols, ensuring that training translates directly to clinical practice. Beyond procedural skills, VMed-Pro also reinforces core medical concepts; learners can review anatomy and physiology within the context of a virtual patient, connecting textbook knowledge to hands-on clinical judgment. 2) Surgical AR: Intra-operative decision making Augmented reality for surgical navigation combines real-time image registration, AI segmentation, ergonomically designed head-worn glasses, and headsets to convert preoperative DICOM stacks into interactive holographic anatomy, giving surgeons X-ray visualization without diverting gaze from the field – a true Surgical Copilot right in the OR. AI-driven segmentation and computer-vision pipelines generate metric-accurate volumetric models and annotated overlays that support trajectory planning, instrument guidance, and intraoperative decision support. Robust spatial registration and tracking (marker-based or depth-sensor aided) align holograms with patient anatomy to submillimetre accuracy, enabling precise tool guidance and reduced reliance on fluoroscopy. Lightweight AR hardware, featuring hand-tracking and voice control, preserves surgeon ergonomics and minimizes distractions. Cloud and on-premises inference options balance latency and computational power to enable real-time assistance. Significant industry investment and agile startups have driven integration with PACS, navigation systems, and multi-user XR sessions, enhancing preoperative rehearsal and team…

June 27, 2025
Methodology of VR/MR/AR and AI Project Estimation

Estimation of IT projects based on VR, XR, MR, or AI requires both a deep technical understanding of advanced technologies and the ability to predict future market tendencies, potential risks, and opportunities. In this document, we aim to thoroughly examine estimation methodologies that allow for the most accurate prediction of project results in such innovative fields as VR/MR/AR and AI by describing unique approaches and strategies developed by Qualium Systems. We strive to cover existing estimation techniques used at our company and delve into the strategies and approaches that ensure high efficiency and accuracy of the estimation process. While focusing on different estimation types, we analyze the choice of methods and alternative approaches available. Due attention is paid to risk assessment being the key element of a successful IT project implementation, especially in such innovative fields as VR/MR/AR and AI. Moreover, the last chapter covers the demo of a project of ours, the Chemistry education app. We will show how the given approaches practically affect the final project estimation. Read

June 27, 2025
What Are Spatial Anchors and Why They Matter

Breaking Down Spatial Anchors in AR/MR Augmented Reality (AR) and Mixed Reality (MR) depend on accurate understanding of the physical environment to create realistic experiences, and they hit this target with the concept of spatial anchors. These anchors act like markers, either geometric or based on features, that help virtual objects stay in the same spot in the real world — even when users move around. Sounds simple, but the way spatial anchors are implemented varies a lot depending on the platform; for example, Apple’s ARKit, Google’s ARCore, and Microsoft’s Azure Spatial Anchors (ASA) all approach them differently. If you want to know how these anchors are used in practical scenarios or what challenges developers often face when working with them, this article dives into these insights too. What Are Spatial Anchors and Why They Matter A spatial anchor is like a marker in the real world, tied to a specific point or group of features. Once you create one, it allows for some important capabilities: Persistence. Virtual objects stay exactly where you placed them in the real-world, even if you close and restart the app. Multi-user synchronization. Multiple devices can share the same anchor, so everyone sees virtual objects aligned to the same physical space. Cross-session continuity. You can leave a space and come back later, and all the virtual elements will still be in the right place. In AR/MR, your device builds a point cloud or feature map by using the camera and built-in sensors like the IMU (inertial measurement unit). Spatial anchors are then tied to those features, and without them, virtual objects can drift or float around as you move, shattering the sense of immersion. Technical Mechanics of Spatial Anchors At a high level, creating and using spatial anchors involves a series of steps: Feature Detection & Mapping To start, the device needs to understand its surroundings: it scans the environment to identify stable visual features (e.g., corners, edges). Over time, these features are triangulated, forming a sparse map or mesh of the space. This feature map is what the system relies on to anchor virtual objects. Anchor Creation Next, anchors are placed at specific 3D locations in the environment in two possible ways: Hit-testing. The system casts a virtual ray from a camera to a user-tapped point, then drops an anchor on the detected surface. Manual placement. Sometimes, developers need precise control, so they manually specify the exact location of an anchor using known coordinates, like ensuring it perfectly fits on the floor or another predefined plane. Persistence & Serialization Anchors aren’t temporary — they can persist, and here’s how systems make that possible: Locally stored anchors. Frameworks save the anchor’s data, like feature descriptors and transforms, in a package called a “world map” or “anchor payload”. Cloud-based anchors. Cloud services like Azure Spatial Anchors (ASA) upload this anchor data to a remote server to let the same anchor be accessed across multiple devices. Synchronization & Restoration When you’re reopening the app or accessing the anchor on a different device, the system uses the saved data to restore the anchor’s location. It compares stored feature descriptors to what the camera sees in real time, and if there’s a good enough match, the system confidently snaps the anchor into position, and your virtual content shows up right where it’s supposed to. However, using spatial anchors isn’t perfect, like using any other technology, and there are some tricky issues to figure out: Low latency. Matching saved data to real-time visuals has to be quick; otherwise, the user experience feels clunky. Robustness in feature-scarce environments. Blank walls or textureless areas don’t give the system much to work with and make tracking tougher. Scale drift. Little errors in the system’s tracking add up over time to big discrepancies. When everything falls into place and the challenges are handled well, spatial anchors make augmented and virtual reality experiences feel seamless and truly real. ARKit’s Spatial Anchors (Apple) Apple’s ARKit, rolled out with iOS 11, brought powerful features to developers working on AR apps, and one of them is spatial anchoring, which allows virtual objects to stay fixed in the real world as if they belong there. To do this, ARKit provides two main APIs that developers rely on to achieve anchor-based persistence. ARAnchor & ARPlaneAnchor The simplest kind of anchor in ARKit is the ARAnchor, which represents a single 3D point in the real-world environment and acts as a kind of “pin” in space that ARKit can track. Building on this, ARPlaneAnchor identifies flat surfaces like tables, floors, and walls, allowing developers to tie virtual objects to these surfaces. ARWorldMap ARWorldMap makes ARKit robust for persistence and acts as a snapshot of the environment being tracked by ARKit. It captures the current session, including all detected anchors and their surrounding feature points, into a compact file. There are a few constraints developers need to keep in mind: World maps are iOS-only, which means they cannot be shared directly with Android. There must be enough overlapping features between the saved environment and the current physical space, and textured structures are especially valuable for this, as they help ARKit identify key points for alignment. Large world maps, especially those with many anchors or detailed environments, can be slow to serialize and deserialize, causing higher application latency when loading or saving. ARKit anchors are ideal for single-user persistence, but sharing AR experiences across multiple devices poses additional issues, and developers often employ custom server logic (uploading ARWorldMap data to a backend), enabling users to download and use the same map. However, this approach comes with caveats: it requires extra development work and doesn’t offer native support for sharing across platforms like iOS and Android. ARCore’s Spatial Anchors (Google) Google’s ARCore is a solid toolkit for building AR apps, and one of its best features is how it handles spatial anchors: Anchors & Hit-Testing ARCore offers two ways to create anchors. You can use Session.createAnchor(Pose) if you already know the anchor’s position, or…



Let's discuss your ideas

Contact us